

Institute of Energy and Mechanical Engineering named after A. Burkitbayev Department of "Technological machines and equipment"

EDUCATIONAL PROGRAM 6B07107 "Operational and Service Engineering"

Code and classification of the field of 6B07 « Engineering, manufacturing and

education civil engineering»

Code and classification of training 6B071 «Engineering and engineering

directions trades»

Group of educational programs B064 «Mechanics and metal working»

Level based on NQF 6
Level based on IQF 6

Study period 4 years Amount of credits 240

Almaty 2025

Educational program 6B06108 "Digital monitoring of machines and equipment" was approved at the meeting of K.I. Satbayev KazNRTU Academic Council Minutes # 12 dated «22» April 2024

was reviewed and recommended for approval at the meeting of K.I. Satbayev KazNRTU Educational and Methodological Council
Minutes # 6 dated «19» April 2024

Educational program 6B06108 "Digital monitoring of machines and equipment" was developed by Academic committee based on direction 6B061 «Information and communication technologies»

Full name	Academic degree / academic title	Position	Place of work	Signature
Chairperson of A	cademic Committee:			
Yelemessov Kassym	Candidate of Technical Sciences, Professor	Director of the Institute of Energy and Mechanical Engineering	KazNRTU named after K.I. Satbayev	511
Teaching staff:				
Kaliev Bakytzhan	Candidate of Technical Sciences, Associate Professor	Head of the department "Technological machines and equipment"	KazNRTU named after K.I. Satbayev	Dony-
Bortebayev Saiyn	Candidate of Technical Sciences, Associate Professor	Associate Professor	KazNRTU named after K.I. Satbayev	M
Employers:				1 .
Shakenov Aman	PhD	Chief Executive Officer	Borusan Cat Kazakhstan LLP	ANS
Students				
Tynyshtyk Erasyl		4th year student	KazNRTU named after K.I. Satbayev	Enaf

Table of contents

	List of abbreviations and symbols	4
1.	Description of the educational program	5
2.	Purpose and objectives of the educational program	6
3.	Requirements for evaluating the learning outcomes of an educational	8
	program	
4.	Passport of the educational program	11
4.1.	General information	11
4.2.	The relationship between the attainability of the formed learning	14
	outcomes in the educational program and academic disciplines	
5.	Curriculum of the educational program	60

List of abbreviations and designations

NCJS KazNRTU named after K. I. Satbayev– NCJS «KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY named after K.I. SATBAYEV»; SOSE – State obligatory standard of education of the Republic of Kazakhstan;

EP – educational program;

IWS – independent work of a student (student, undergraduate, doctoral student);

IWST – independent work of a student with a teacher (independent work of a student (undergraduate, doctoral student) with a teacher);

WC – working curriculum;

UC – university component;

CC – component of choice;

NQF – National Qualifications Framework; S

QF – Sectoral Qualifications Framework;

LO – learning outcomes;

KC – key competencies;

SDGs – Sustainable Development Goals.

1. Description of educational program

The educational program "Operational and Service Engineering" covers the specialty "Technological Machines and Equipment" in the following fields:

- Metallurgical machines and equipment;
- Mining machines and equipment;
- machines and equipment of the oil and gas industry.

This document meets the requirements of the following legislative acts of the Republic of Kazakhstan and regulatory documents of the Ministry of Education and Science of the Republic of Kazakhstan:

- The Law of the Republic of Kazakhstan "On Education" with amendments and additions within the framework of legislative changes to increase the independence and autonomy of universities dated 04.07.18 № 171-VI.
- The Law of the Republic of Kazakhstan "On Amendments and Additions to Certain Legislative Acts of the Republic of Kazakhstan on the Expansion of the Academic and Management Independence of Higher Education Institutions" dated 04.07.18 №171-VI.
- Order of the Minister of Education and Science of the Republic of Kazakhstan dated 30.10.18, №595 "On approval of the Model Rules for the activities of educational organizations of the corresponding types".
- The state compulsory standard of higher education (Appendix 7 to the order of the Minister of Education and Science of the Republic of Kazakhstan dated 31.10.18. No604.
- Decree of the Government of the Republic of Kazakhstan dated 19.01.12, №111 "On approval of the Model Rules for admission to study at educational organizations implementing educational programs of higher education" with amendments and additions from 14.07.16 № 405.
- 'National Qualifications Framework", approved by the protocol of March 16, 2016 by the Republican tripartite commission on social partnership and regulation of social and labor relations.
- industry qualification framework in the field of "mechanical engineering". Order No. 446 of the acting Minister of industry and new technologies of the Republic of Kazakhstan dated December 27, 2013.

The purpose of the educational program of the specialty "Operational and Service Engineering" is to provide comprehensive and high quality training of competitive, highly qualified specialists who are ready to solve practical and theoretical problems of professional activity in modern conditions on the basis of the development of skills and abilities necessary for the future specialist.

The field of professional activity of the bachelor of the educational program "Operational and Service Engineering" includes:

- sections of science and technology containing a set of tools, techniques, methods and methods of human activity aimed at creating competitive engineering products and based on the use of modern methods and tools for designing, calculating, mathematical, physical and computer modeling;

- organization and execution of works on the creation, installation, commissioning, maintenance, operation, diagnostics and repair of technological machines and equipment, on the development of technological processes for the production of parts and components.

The objects of professional activity of the bachelor are:

- technological machines and equipment of various complexes;
- technological equipment and means of mechanization and automation of technological processes;
- production processes, their development and development of new technologies;
 installation and repair of technological machines and equipment;
- means of information, metrological, diagnostic and management support of technological systems to achieve the quality of the products;
 - means of testing and quality control of technological machines and equipment;
- regulatory and technical documentation, standardization and certification systems, methods and means of testing and quality control of products.

Types of professional activity are:

- experimental research;
- settlementdesignandanalytical;
- productionandtechnology;
- serviceandoperational;
- installation and commissioning; organizational and managerial.

Subjects of professional activity of the bachelor is:

- technological machines and equipment; power equipment; welding equipment; drive systems; traffic control systems; operator life support systems;
 - constructionandmaintenancematerials;
 - equipment for the manufacture, testing and disposal of technological machines;
 - equipment for maintenance and repair of technological machines;
- -instrumentation for the manufacture and operation of machines; equipment for automation of working processes of machines; equipment for the design of machines.

2. Purpose and objectives of educational program

Purpose of EP: The aim of the educational program is to train highly qualified and competitive specialists who are able to implement their knowledge, skills and competencies in the field of monitoring, operation and maintenance of machinery and equipment using innovative technologies. This goal reflects the goals of sustainable development: Quality Education, Industrialization, Innovation and Infrastructure and Responsible Consumption and Production (4, 9 and 12).

Tasks of EP:

- studying the cycle of general education disciplines to ensure social and humanitarian education based on the laws of socio-economic development of society, history, modern information technologies, state language, foreign and Russian languages;

- studying the cycle of basic disciplines to ensure the knowledge of naturalscientific, general technical and economic disciplines as the foundation of professional education:
- the cycle of profiling disciplines is focused on the study of key theoretical aspects of technological machines in general, theoretical and practical techniques, methods and methods of human activity aimed at creating competitive technological machines and based on the application of modern methods and means of design, mathematical, physical and computer modeling of technological processes and equipment;
- study of disciplines that form knowledge skills and abilities of planning and organization of research, design of technologies and apparatuses;
- familiarization with technologies and equipment of enterprises during different types of practices.
- acquiring skills of laboratory research, technological calculations, equipment selection and design using modern computer technologies and programs;
- acquiring skills of using innovative technologies in the field of machinery and equipment operation in accordance with the goal 9 of the SDGs;
- studying methods of rational use of energy resources, utilization of production waste in accordance with the goal 12 of the SDGs.

3. Requirements for evaluating the educational program learning outcomes

Admission of persons entering KazNRTU is carried out by placing a state educational order (educational grants), as well as paying for training at the expense of citizens' own funds and other sources.

Admission is carried out according to the applications of an applicant who has completed full secondary, secondary special education on a competitive basis in accordance with the points of the certificate issued by the results of the unified national testing (hereinafter – UNT) or complex testing. To participate in the competition, it is required to gain at least 65 points when entering a national University.

Special requirements for admission to the program if available, including for graduates of 12-year schools, colleges of applied bachelor's programs, etc.

Admission to the university of individuals who have technical and professional or post-secondary education with the qualification of "mid-level specialist" or "applied bachelor" in related areas of training of higher education personnel, providing for shorter training periods, is carried out according to the results of the UNT. (Model rules for admission to education organizations that implement educational programs of higher and postgraduate education dated October 31, 2018 № 600).

Descriptors of the level and scope of knowledge, skills, skills and competencies A – knowledge and understanding:

A1 - The ability to logically represent the acquired knowledge and understanding of systemic relationships within disciplines, as well as interdisciplinary relations in modern science.

- A2 Knowledge of approaches and methods of critical analysis, the ability to use them practically in relation to various forms and processes of production.
- A3 to carry out basic calculations of the main parameters of technological machines, to justify their choice depending on production levels.
 - C application of knowledge and understanding
- B1 Independent development and promotion of various options for solving professional tasks using theoretical and practical knowledge
- B2 to put forward hypotheses for the acquisition of new knowledge necessary for daily professional activity and continuing education
- B3 based on basic knowledge, be able to adequately navigate in various situations
 - C formation of judgments
- C1 on the basis of knowledge about economic laws, the formation of hypotheses, forecasting and planning of economic activity of the enterprise.
- C2 be able to work in a team, correctly defend your point of view, and offer new solutions.
- C3 skills of daily acquisition of new knowledge necessary for professional activity.
 - D personal abilities
- D1 compliance with the norms of business ethics, possession of ethical and moral standards of behavior.
- D2 the ability to find a compromise, correlate your opinion with the opinion of the team
- D3 to know social and ethical values based on public opinion, traditions, customs, social norms and be able to navigate them in their professional activities.

Competencies upon completion of training

	General cultural competencies (GCC)
GCC	Ability to communicate orally and in writing in the state, Russian and foreign languages
1	to solve problems of interpersonal and intercultural interaction
GCC	Understanding and practical use of healthy lifestyle norms, including prevention issues,
2	the ability to use physical culture to optimize performance
GCC	The ability to analyze the main stages and patterns of the historical development of
3	society for the formation of a civic position
GCC	The ability to use the basics of philosophical knowledge to form a worldview position
4	
GCC	The ability to critically use the methods of modern science in practice
5	
GCC	Awareness of the need and acquisition of the ability to independently study and
6	improve their qualifications throughout their working life
GCC	Knowledge and understanding of professional ethical standards, proficiency in
7	professional communication techniques
GCC	Ability to work in a team, tolerantly perceiving social, ethnic, confessional and cultural
8	differences

GCC	The ability to use the basics of economic knowledge in various fields of activity
9	
	General professional competencies (GPC)
GPC-	The ability to acquire new knowledge with a high degree of independence using
1	modern educational and information technologies
GPC-	Possession of computer skills sufficient for professional activity with basic
2	programming
GPC-	Knowledge of the basic methods, methods and means of obtaining, storing, processing
3	information, the ability to use modern technical means and information technologies
	using traditional information carriers, distributed knowledge bases, as well as
GPC-	information in global computer networks to solve communication problems Understanding the essence and significance of information in the development of
4	modern society, the ability to receive and process information from various sources,
-	the willingness to interpret, structure and formalize information in a form accessible to
	others
GPC-	Ability to solve standard tasks of professional activity on the basis of information and
5	bibliographic culture with the use of information and communication technologies and
	taking into account the basic requirements of information security
	Professional competencies (PC)
PC1	The ability to systematically study scientific and technical information, domestic and
	foreign experience in the relevant training profile
PC 2	The ability to take part in the preparation of scientific reports on the completed task
	and implement the results of research and development in the field of technological
DG 0	machines and equipment
PC 3	Ability to participate in work on innovative projects using basic research methods
PC 4	Ability to model technical objects and technological processes using standard packages
	and computer-aided design tools, willingness to conduct experiments according to
	specified methods with processing and analysis of results
PC 5	Knowledge of approaches and methods of critical analysis, the ability to use them
	practically in relation to various forms and processes of technological processes
PC 6	The ability to independently master new equipment, technological and technical
DC 7	documentation, make adjustments to it in relation to operating conditions
PC 7	The ability to take part in the calculation and design of parts and assemblies of technological machines in accordance with the technical specifications and the use of
	standard design automation tools
PC 8	The ability to conduct patent research in order to ensure the patent purity of new design
	solutions and their patentability with the determination of indicators of the technical
	level of the designed products
PC 9	The ability to investigate and optimize the operating modes of technological machines
	during their operation
PC 10	The ability to conduct a preliminary feasibility study of design solutions
PC 11	The ability to design the technical equipment of workplaces with the placement of
	technological equipment, the ability to master the equipment being introduced
PC	The ability to participate in the work on fine-tuning and mastering of technological
12	processes during the preparation of production of new products, to check the quality of

	installation and commissioning during testing and commissioning of new samples of
	products, assemblies and parts of manufactured products
PC 13	Ability to check the technical condition and residual life of technological equipment,
	organize preventive inspection and maintenance of technological machines and
	equipment
PC 14	The ability to carry out measures for the prevention of occupational injuries and
	occupational diseases, to monitor compliance with the environmental safety of the work
	carried out
PC 15	Ability to choose basic and auxiliary materials, methods of implementation of
	technological processes, to apply progressive methods of operation of technological
	equipment
PC 16	Master the basic methods of calculating the parameters of technological equipment, the
	methodology of their selection according to reference books and catalogs.

4. Passport of educational program

4.1. General information

No	Field name	Comments
1	Code and classification of the field of	6B07 «Engineering, manufacturing and civil
	education	engineering»
2	Code and classification of training	6B071 «Engineering and engineering trades»
	directions	
3	Educational program group	B064 "Mechanics and metal working"
4	Educational program name	"Operational and Service Engineering"
5	Short description of educational program	The educational program "Operational and
		service engineering" covers the specialty
		"Technological machines and equipment" in the
		following areas:
		- metallurgical machines and equipment;
		- mining machines and equipment;
		- machinery and equipment for the oil and gas
	D. CED	industry;
6	Purpose of EP	The aim of the educational program is to train
		highly qualified and competitive specialists who
		are able to implement their knowledge, skills and
		competencies in the field of monitoring, operation and maintenance of machinery and equipment
		using innovative technologies. This goal reflects
		the goals of sustainable development: Quality
		Education, Industrialization, Innovation and
		Infrastructure and Responsible Consumption and
		Production (4, 9 and 12).
7	Type of EP	New
	The level based on NQF	6
9	The level based on IQF	6
10	Distinctive features of EP	no
11	List of competencies of educational	QC 1. Communication
	program	QC 2. Basic literacy in the natural sciences
		QC 3. General engineering competencies
		QC 4. Professional competencies
		QC 5. Engineering and computer competencies
		QC 6. Engineering and working competencies
		QC 7. Socio-economic competencies
12	Looming outcomes of advantage	QC 8. Special professional competencies
12	Learning outcomes of educational	-
	program	proposals and measures for the implementation of technological processes of operation, repair and
		maintenance of technological machines for
		various purposes. Use welding technologies and
		equipment in repair production.
		LO2: Demonstrate theoretical knowledge and
		practical skills in the use of innovative techniques
		and technologies in the field of machinery and
		equipment operation in accordance with the
		Sustainable Development Goal Industrialization,

Innovation and Infrastructure (9 SDGs). Possess knowledge in the field of operational reliability and technical diagnostics of machines and equipment. Select robotic systems and manipulators for production processes.

LO3: Demonstrate knowledge of the branches of mathematics, physics and other natural sciences and apply them to solve engineering problems in the field of maintenance of machinery and equipment

LO4: Apply innovative methods of installation and assembly of technological equipment units. Evaluate the technical condition and residual life of the equipment, organize preventive inspection and maintenance of equipment using diagnostic devices, process the results of measurements

LO5: To use the principles of formulation and algorithms for solving research tasks in order to systematically develop knowledge about project management. To evaluate the technical and economic performance of industrial enterprises. Apply in practice methods of calculating parts and evaluate the strength of materials

LO6: Apply the knowledge of economic laws, labor safety and environmental protection norms in the field of technological equipment operation in accordance with the Sustainable Development Goal Responsible Consumption and Production (12 SDGs). Use the rules of moral development, culture of academic integrity on a professional level.

LO7: To study the basic tribological patterns for solving specific design, technological and operational problems related to friction, wear and lubrication in machines and mechanisms

LO8: Perform standardization work, technical preparation for certification of technical means and equipment, organize metrological support of technological processes using standard quality control methods

LO9: Apply modern design methods and computer graphics software in the design of machines and equipment. Choose materials when designing machines

LO10: To choose the main methods and means of obtaining, storing, processing information, to solve communication problems to use modern technical means and information technologies using traditional media, as well as information in global computer networks

	LO11 : Apply the basic laws and forms of regulation of social behavior, human and civil
	rights and freedoms in the development of social
	projects, demonstrating respect for people,
	tolerance to another culture, readiness to maintain
	partnerships
	LO12: Apply the knowledge of economic laws,
	labor safety and environmental protection norms
	in the field of technological equipment operation
	in accordance with the Sustainable Development
	Goal Responsible Consumption and Production (12 SDGs). Use the rules of moral development,
	culture of academic integrity on a professional
	level.
	LO13 : Solve engineering problems using the
	basic laws of mechanics, electrical engineering,
	hydraulics, thermodynamics and heat and mass
	transfer
	LO14 Apply theoretical and experimental
	methods for calculating machine parameters and
	applied software for design and verification
10 71	calculations
13 Education form	full
14 Period of training	4 years
15 Amount of credits	240
16 Languages of instruction	Kazakh, Russian, English
17 Academic degree awarded	Bachelor of Engineering and Technology
18 Developer(s) and authors:	Academic Affairs Committee

4.2. Relationship between the achievability of the formed learning outcomes based on educational program and academic disciplines

Nº		Short description of the	Number	Constant line in the constant line													
	Name of the discipline	discipline	of credits	LO1	LO2	LO 3	LO 4	LO 5	LO 6	LO 7	LO8	LO 9	LO101	LO1	LO1 2	LO1 3	LO1 4
		Cycle of ge				plin	es										
1	English language	•	quired co	mpon	lent									l	1		T
	English language	English is a discipline of the general education cycle. After determining the level (according to the results of diagnostic testing or IELTS results), students are divided into groups and disciplines. The name of the discipline corresponds to the level of English proficiency. During the transition from level to level, the prerequisites and post-prerequisites of the discipline are observed	5			v											
2	Kazakh (Russian) language	The socio-political, socio- cultural spheres of communication and functional styles of the modern Kazakh (Russian) language are considered. The course highlights the specifics of scientific style in order to develop and activate	5			v											

	1				1		 1	ı			
		professional and									
		communicative skills and									
		abilities of students, allows									
		students to practically master									
		the basics of scientific style									
		and develops the ability to									
		perform structural and									
		semantic analysis of the text									
3	Information and	Required component. The task	5		V						
	communication technologies	of studying the discipline is to									
	(in English)	acquire theoretical knowledge									
		about information processes,									
		about new information									
		technologies, local and global									
		computer networks, methods									
		of information protection; to									
		acquire skills in using text									
		editors and tabular processors;									
		to create databases and various									
		categories of application									
		programs									
4	History of Kazakhstan		5		v						
		events, phenomena, facts,									
		processes that took place on									
		the territory of Kazakhstan									
		from ancient times to the									
		present day. The sections of									
		the discipline include: the									
		steppe empire of the Turks;									
		early feudal states on the									
		territory of Kazakhstan;									
		Kazakhstan during the Mongol									

		conquest (XIII century), medieval states in the XIV-XV centuries. The epoch of the Kazakh Khanate XV-XVIII centuries. Kazakhstan as part of the Russian Empire,							
		Kazakhstan during the Great Patriotic War, during the formation of independence and							
		at the present stage							
5 Pl	hilosophy	Philosophy forms and develops critical and creative thinking, worldview and culture, provides knowledge about the most general and fundamental problems of existence and gives them a methodology for solving various theoretical and practical issues. Philosophy expands the horizon of vision of the modern world, forms citizenship and patriotism, promotes self-esteem, awareness of the value of human existence. It teaches you to think and act correctly, develops practical and cognitive skills, helps you to search and find ways and ways of living in harmony with yourself, society, and the world around you		V					

6	Module of socio-political	The study of the course	3		v					
J	knowledge (sociology,	contributes to the formation of			*					
	political science)	students' theoretical knowledge								
	pontical science)									
		about society as an integral								
		system, provides the political								
		aspect of training a highly								
		qualified specialist on the basis								
		of modern world and domestic								
		political thought. The								
		discipline is designed to								
		improve the quality of both								
		general humanitarian and								
		professional training of								
		students. Knowledge in the								
		field of sociology and political								
		science is necessary to								
		understand political processes,								
		to form a political culture, to								
		develop a personal position								
		and a clearer understanding of								
		the measure of one's								
		responsibility								
7	Module of socio-political	 	5		v					
	knowledge (cultural studies,	knowledge (cultural studies,								
	psychology)	psychology) is designed to								
	F = 3	familiarize students with the								
		cultural achievements of								
		mankind, to understand and								
		assimilate the basic forms and								
		universal patterns of formation								
		and development of culture.								
		During the course of cultural								
		During the course of cultural								

	1				1		1	1	1	-	1			1	
		studies, general problems of													
		the theory of culture, leading													
		cultural concepts, universal													
		patterns and mechanisms of													
		formation and development of													
		culture, the main historical													
		stages of the formation and													
		development of Kazakh culture													
		are considered. The regularities													
		of the emergence, development													
		and functioning of mental													
		processes, states, properties of													
		a person engaged in a													
		particular activity, the													
		regularities of the development													
		and functioning of the psyche													
		as a special form of vital													
		activity are also studied													
		Cycle of gen				plin	es								
			mponent	of ch	oice										
8	Fundamentals of anti-	_to form an informed	5									v	v		
	corruption culture	understanding of the problem													
		of corruption in society, to													
		develop anti-corruption skills,													
		as well as to educate civic													
		responsibility and ethical													
		principles. Contents_basic													
		theoretical and practical													
		knowledge about corruption,													
		analysis of corruption													
		phenomena, strategies and													
		μ													

9	Fundamentals of economics and entrepreneurship	methods of combating them, formation of adequate behavior and values aimed at creating an honest and open society The purpose of studying the discipline is to familiarize students with the basic principles of economic theory and entrepreneurial activity. The course includes the study of basic economic concepts, market mechanisms, management tools and key aspects of entrepreneurship, such as starting and managing a business, analyzing the market environment, financial planning, assessing risks and developing development strategies.			V				V	
10	Fundamentals of scientific research methods	-	5			V				v

	competence-based approach to the use of methods and rules for conducting research in the field of mechanical engineering, related processes and their technologies. Contents: stages of scientific research, terms and concepts, methods of conducting an experiment, mathematical methods of processing research results. Concepts of engineering, laboratory and industrial experiment, bench								
Ecology and life safety	research. The purpose of the discipline: to acquaint students with the tasks of ecology as a science, its sections and conclusions that find application in various fields of practical activity. Brief description: ecological terms, laws of functioning of natural systems are considered; environmental monitoring and management in the field of its security; sources of air, water, soil pollution and ways to	5			V			V	

		emergency situations of natural											
		and man-made nature.											
		and man made nature.											
12	Basics of Financial Literacy	Purpose: acquiring knowledge	5				V						
		and skills in the field of											
		personal finance management,											
		including budget planning, use											
		of financial instruments,											
		taxation and investments to											
		ensure effective management											
		and increase of own funds.											
		Contents: as part of the course,											
		students will master the basics											
		of financial management, learn											
		how to create a budget, use											
		various financial products, plan											
		and pay taxes. They will also											
		gain practical skills in											
		analyzing financial information											
		and choosing investment											
		strategies.											
		Creat	e of basic	dianir	lings					1			
			versity c										
13	Mathematics I	Purpose: to introduce students				v							
		to the fundamental concepts of				,							
		linear algebra, analytical											
		geometry and mathematical											
		analysis. To form the ability to											
		solve typical and applied											
		problems of the discipline.											
<u> </u>		ш	l					 	1	1			

		Contents_ Elements of linear algebra, vector algebra and analytical geometry. Introduction to the analysis. Differential calculus of a function of one variable. The study of functions using derivatives. Functions of several variables. Partial derivatives. The extremum of a function of two variables.									
14	Physics	Purpose:To form ideas about the modern physical picture of the world and scientific worldview, the ability to use knowledge of fundamental laws, theories of classical and modern physics. Contents_physical fundamentals of mechanics, fundamentals of molecular physics and thermodynamics, electricity and magnetism, vibrations and waves, optics and fundamentals of quantum physics.	5		v					v	
15	Mathematics II	Purpose: To teach students integration methods. To teach	5	,	V						

	you how to choose the right method for finding the primitive. To teach how to apply a certain integral to solve practical problems. Contents_integral calculus of the function of one and two variables, series theory. Indefinite integrals, methods of their calculation. Certain integrals and applications of certain integrals. Improper integrals. Theory of numerical and functional series, Taylor and Maclaurin series, application of series to approximate calculations								
Engineering and computer graphics	Purpose: formation of knowledge of drawing construction, skills to read and develop graphic documentation. The student must apply the achievements of modern computer technology in all areas of the transport industry. Contents_ESCD standards. Graphic primitives. Methods and properties of orthogonal	5				V			

		projection. The Monge plot. GOST 2.305-68. Incisions. Axonometric projections. Types of connections. Polyhedra. Sketches of details. Detailing. Ways to transform a drawing. Creating a 3M complex solid-state object in the AutoCAD system,								
17	The basics of plumbing	Purpose of study: To promote the formation of students ' technical thinking, ability to apply this knowledge in a production environment. To familiarize students with the operational topics, to master the techniques and methods of mechanical works, to learn to perform all basic types of mechanical works. To create conditions for the development of social-professional competence The result of the development of the discipline the student should be able to: apply techniques and methods of basic types of locksmith work; use the most common tools and instruments	4	V			V			

18	Introduction to the specialty	The course is designed to familiarize students in the field of operational and service technologies of technological machines and equipment in the oil and gas, mining and metallurgical industries with the necessary theoretical and practical knowledge that allows the student to form an idea of the industries and the place of a specialist in the production sector and science in its broad representation. The content of the course determines the practical activity of the bachelor at all stages of the life cycle of					v	V		
		technological machines								ı
19	Theoretical and applied mechanics	To involve students in the development and solution of tasks that help bridge the gap between scientific theory and engineering practice. Contents_ Theoretical mechanics, theory of mechanisms and machines. Theoretical mechanics deals with the general laws of mechanical movements of	5						V	v

	material bodies and the mechanical interactions between them. In the theory of mechanisms and machines, general methods of research, construction, and kinematics of mechanisms and machines are studied									
Hydraulics and hydraulic drive of technological machines	Application of knowledge in the field of technical fluid mechanics (hydraulics), for the calculation of hydraulic pressure systems, hydraulic machines, hydraulic and pneumatic actuators, widely used in the oil industry. Full hydraulic calculation of various hydraulic systems, hydraulic and pneumatic equipment drives. Getting the basics of knowledge in the field of hydraulics in the field of hydraulic and pneumatic actuators.				V				V	
	Studying the basic laws and concepts of standardization and interchangeability, methods	5				V				

	٦		I	1	1	 -	 	1 1	1	1	1	
		and means of controlling										
		deviations of the shape,										
		roughness and waviness of the										
		surfaces of parts, the role of										
		standardization in improving										
		the quality of machines										
		Interchangeability binds in a										
		single whole design,										
		production technology and										
		control products.										
		Standardization and unification										
		of parts and elements										
		contribute to the acceleration										
		and cheapening of the design										
		and manufacture of products.										
		-	_									
22		The course provides for the	5					V				
		study of requirements for basic										
		engineering materials. Methods										
		of obtaining metallic and non-										
	The branch Materials and	metallic materials used in										
	Structural Materials	various branches of technology										
	Technology	are considered. Objective										
		regularities and dependences of										
		their properties on the chemical										
		composition, structure,										
		processing methods and										
		operating conditions, as well as										
		methods of forming blanks,										
		parts and products from these										

		materials. Attention is paid to lubricants and composite materials, metal corrosion and coatings								
23	Strength of materials	_to independently calculate structural elements, mechanisms and machine parts. Contents_ Stretching and compression. Stresses in cross sections and deformations of a straight rod. Mechanical properties of materials under tension and compression. Calculation of tensile and compressive strength and stiffness. Geometric characteristics of flat sections. Shear and torsion. Calculation of strength and torsional stiffness. The bend. Normal and tangential bending stresses_	5						V	V
24	Basics of thermodynamics and heat engineering installations	The study of discipline is, the formation of students' knowledge of thermal engineering terminology, the laws of obtaining and transforming thermal energy,	5						V	

		methods of analyzing the efficiency of using heat; principles of operation, designs, applications and potential capabilities of the main heat-power equipment.										
25	Industrial economics	Purpose: To provide students with an understanding of the basic principles and factors affecting industrial economics, including the organization of production, the competitiveness of enterprises, and the impact of government policy. Content: study the structure and dynamics of industrial production, analyze the main factors affecting the efficiency of enterprises, including technological innovation, factors of production and competition. Examination of the role of public policy in industrial development and industrial safety issues.	5		V						V	
26	Bases of designing and details of car	Purpose: to acquire knowledge of calculations and design of	5			,	v	,	v			

	machine parts and assemblies, taking into account the criteria of strength, reliability and stability. Contents_ general principles of design and construction, construction of models and calculation algorithms for standard machine parts taking into account performance criteria, fundamentals of theory and methodology for calculating standard machine parts, computer technologies for designing assemblies and machine parts. Basic requirements for machine parts and assemblies.									
Electrotechnics and Microelectronics	Electrical and magnetic circuits. Basic definitions, parameters and methods of calculation of DC electrical circuits. Analysis and calculation of linear AC circuits. Analysis and calculation of electrical circuits with nonlinear elements. Analysis and calculation of magnetic circuits.	5		V					V	

	Electromagnetic devices and electrical machines. Fundamentals of electronics and electrical measurements. The element base of modern electronic devices. Semiconductor elements. Electronic equipment power supply devices. Amplifiers of electrical signals. Electronic amplifiers and generators. Elements of pulse technology. Pulse and auto-generator devices. Fundamentals of digital and microelectronics. Microprocessor tools							
Fundamentals of Artificial Intelligence	The purpose of the course is to familiarize students with the basic concepts, methods and technologies in the field of artificial intelligence: machine learning, computer vision, natural language processing, etc. As a result of studying this course, students will gain an understanding of the basic principles of artificial intelligence systems and their role in the modern world. The	5				V		

 -	т			 					
	pose of this course is to								
<u> </u>	vide an introduction to the								
basi	ic concepts, methods, and								
tech	nnologies of artificial								
inte	elligence, such as machine								
lear	ming, computer vision,								
natu	ural language processing,								
and	others. Students will								
acqu	uire knowledge of the key								
prin	nciples, algorithms and								
	ctical applications that								
und	lerlie the development and								
use	of artificial intelligence in								
vari	ious fields. Upon								
com	npletion of the course,								
stud	dents achieve the following								
lear	ming outcomes: Know basic								
mac	chine learning techniques,								
incl	luding supervised,								
uns	upervised and								
rein	nforcement learning; be able								
to a	pply machine learning								
met	thods to solve various								
prol	blems; have skills in								
wor	rking with various artificial								
	elligence tools and								
tech	nnologies.								

Structural strength of parts and assemblies of technological machines	The course is designed to study the basic methods of calculating the strength of parts and assemblies of technological machines and equipment. The main strength models are considered in detail, in particular, methods of finite element modeling, methods for constructing stiffness matrices, displacements and deformations. A special place is occupied by the basics of calculating stresses and deformations when assessing strength, using various strength theories and methods of calculating the strength of simple and complex structures with the determination of internal forces during static calculation and the output to determine geometric							v	V
	-								
Fundamentals of the theory of reliability of machines and mechanisms	Basic concepts of the theory of reliability. The operating conditions of machinery and equipment. The concept of	5	v						

		maintainability of machinery and equipment parts. Regulatory and technical documentation on the issues of reliability and the development of a system for maintenance and repair of equipment. The nature of loading, operation and wear of friction units of oil and gas equipment, reliability of parts.											
		Cycle	e of basic	discip	lines	J.	<u> </u>		II.		. I		
			mponent	of cho	oice								
31	Equipment maintenance system	Mastering the principle of operation, design, selection and operation of electromechanical equipment of mine stationary installations. Principles of operation and design of machines designed for ventilation of mine workings, mine drainage and compressed air production. Machines for the preparation of laying mixtures and mechanisms for the construction of shotcrete supports. Ensuring the safe and efficient operation of stationary installations, the ability to		V			v						

		design such installations, the choice of equipment, the definition of rational modes of their operation and technical and economic indicators.									
32	Legal regulation of intellectual property	Purpose: the goal is to form a Purpose: the goal is to form a holistic understanding of the system of legal regulation of intellectual property, including basic principles, mechanisms for protecting intellectual property rights and features of their implementation. Contents: The discipline covers the basics of IP law, including copyright, patents, trademarks, and industrial designs. Students learn how to protect and manage intellectual property rights, and consider legal disputes and methods for resolving them.							V	V	
33	Fundamentals of the theory of wear of machinery and equipment	The course studies the basics of the theory of friction and wear, the mechanisms of friction and wear, types of wear. The stages of wear of the friction unit and methods of	5	V		,	v				

		lubrication are considered. To gain practical skills, familiarization with equipment and equipment for determining the wear and characteristics of lubricants is provided. Attention is paid to the physico-chemical processes occurring in triboconjugations. Methods of mathematical modeling of complex processes of friction and wear are considered								
34	Internal combustion engines	Thermodynamic cycles internal combustion engines. The designs of internal combustion engines used in the oil and gas industry, the theory of working processes, the principles of their work, the basic concepts and definitions, technical and economic indicators, designs of engine systems, the rules of their technical operation, maintenance and repair. The processes of compression, combustion and expansion. Calculation of parameters of		Y					V	

		the working mixture in these processes.										
35	Gas-pumping units	The main features and current state of pipeline transportation of natural gas. Modes and performance of gas pumping units at compressor stations. Features of the properties and aerodynamics of currents in gas pumping units. Used in the gas industry types of centrifugal feeders. Designs and characteristics of the Central Natural Gas Center. Methods for determining the technical condition and power consumption Gas pumping units with power transmission.					V				V	
36	Fundamentals of sustainable development and ESG projects in Kazakhstan	Purpose: the goal is for students to master the theoretical foundations and practical skills in the field of sustainable development and ESG, as well as to develop an understanding of the role of these aspects in the modern economic and social development of Kazakhstan.	5			V	v					

	Contents: introduces the principles of sustainable development and the implementation of ESG practices in Kazakhstan, includes the study of national and international standards, analysis of successful ESG projects and strategies for their implementation in enterprises and organizations.									
37	Modes and performance indicators of gas pipelines of compressor stations, design schemes and principles of operation of various types of GTI and their characteristics, purpose, methods of technical diagnostics of GTI under operating conditions, energy-saving technologies for operation of GTI in the oil and gas industry. Natural gas centrifugal blowers of their design and characteristics; concepts and cycles of gas turbines	5			V				V	

38	Pumps, fans, compressors	The device is technologically important and large energy consumers in the industry: pumps, fans and compressors of various types, parameters, effective modes of their operation. Practically mastered the methods of design and installation of pumping stations, fan installations of the main ventilation. Piping networks, their device and installation, auxiliary equipment, ensuring efficient and safe operation of pumping, fan and compressor units are				V			V	
39	Drives of technological machines	Structural diagrams of drives of working bodies, typical solutions. Mechanical and speed characteristics of the drives. Hydraulic drives and control systems. Types and features of hydraulic motors used in machine drives. Types and regulating hydraulic equipment used in machine drives. Typical schemes of variable	5						V	v

40	Fundamentals of designing technological machines and machine graphics	speed drives with proportional electro-hydraulic control. Pneumatic drives and machine control systems. The course is designed to study the designs, type and performance criteria of the components of all technological machines – parts, assemblies, aggregates; study the basics of the theory of work and methods of calculating machine parts in collaboration; acquisition of design and construction skills, development of creative design abilities; mastering modern computer technology and machine graphics in the design; mastering the basic methods of image spatial forms on the plane and execution of drawings				v	v			
41	Computer technologies in operational and service engineering	The course examines the basics of system and automated modeling and design of technical objects; technical characteristics and capabilities	6				v	V		

		of various computer-aided design systems and database management systems. To obtain practical skills, it is planned to use modern computer technologies as a tool for solving scientific and practical problems in operational and service engineering at a high professional level, to improve the basics of knowledge, skills and skills in designing and modern methods of calculating parts, assemblies and mechanisms for strength								
42	Inclusive engineering technologies	The purpose of the discipline is to develop future engineers' competencies in the development, design and implementation of technical solutions that take into account the principles of inclusive engineering and accessibility. The discipline includes the study of the fundamentals of inclusive engineering: universal design and accessibility of engineering			V	v				

		solutions, ethical and social aspects of inclusive engineering. Design of technical solutions with inclusion in mind, implementation of VR/AR simulations for modeling inclusive engineering systems. Students will acquire skills in applying modern technologies to create affordable solutions.								
43	Drives of mining machines and stationary options	Structural diagrams of drives of working bodies of MM and SI. Classification of the working bodies of technological machines according to the nature of the workload of MM and SI. Mechanical and speed characteristics of the drives. Typical schemes of variable speed drives with proportional electro-hydraulic control. Pneumatic actuators and control systems for MM and SI. Element base of pneumatic actuators. New and promising elements of the electric drive.	5						,	V

			of profil versity c							
44	Technology of repair and operation of technological machines	Reliability and durability of their work depend on correct installation and operation of technological machines and the equipment. In the given discipline rules of installation of equipment and technology of his(its) realization are studied. Questions of starting-up and adjustment works, diagnostics of a condition of technological machines are considered(examined). Systems and technology of operation of technological machines, their maintenance service are studied. Trainees get skills and skills of drawing up of technological cards(maps) of maintenance service of machines, the equipment and their electric drive	5	V		V				
45	Instrumentation and automation of technological machines	Formation of the future specialist knowledge of the design of devices, their purpose and principles of	5		,	V	v			

	٦	operation. As well as special								I	1
		training of engineering and									
		technical personnel with									
		_									
		scientific and practical									
		knowledge in the field of									
		operation, as it solves relevant									
		engineering and scientific									
		problems in the field of									
		quality, performance properties									
		and rational use of fuels, oils,									
		lubricants and technical fluids.									
46	Installation and assembly	The course is designed to study	6	v		v					
	production of technological	the main aspects of									
	machines	technologies used in the									
		assembly production of									
		technological machines. The									
		forms of organization and									
		assembly methods are									
		considered in depth, attention									
		is paid to documentary support,									
		tool management and features									
		of the assembly technology of									
		standardized assemblies and									
		connections: threaded,									
		tensioned, gears, rolling and									
		sliding bearings, pipeline									
		systems. Installation									
		technologies are presented in									
		accordance with the stages of									

		the work production project: acceptance of the construction part, methods of installation and alignment of equipment on the foundation, fastening, balancing and centering, stages of commissioning and commissioning on the example of overhead cranes and conveyor belts									
47	Technical diagnostics of technological equipment	The course is aimed at studying the theoretical foundations of technical diagnostics and obtaining practical skills in the use of non-destructive testing methods to assess the technical condition of technological machines and equipment; to familiarize students with the basics of the theory of technical diagnostics, types of technical condition, controlled parameters, technical diagnostics systems; to study the physical foundations of non-destructive testing methods for detecting and diagnosing malfunctions of	4	V	V						

		technological equipment; familiarization with equipment for non-destructive testing, test methods, acquisition of practical skills													
48	Metal welding and cutting	The course studies the physical foundations of the metal welding process; energy sources during welding; electric arc. Classification of welding arcs and their characteristics; dynamic characteristics of power sources; transformers with increased and normal scattering; welding rectifiers; aggregates and converters; multi-post power sources of the welding arc; auxiliary devices of power sources; specialized power sources for electroslag and plasma welding; safety during operation of welding power sources. General information about welding materials. Classification of welding materials.		V		V									
	Cycle of profile disciplines														

		Co	mponent	of ch	oice						
49	Mining and transport machines	As part of the course, students study the principles of operation and design of mining and transport machines; classification and purpose of machines for mining and transportation of minerals; schematic diagrams, design features, applications and basic design characteristics of various machines for breaking, loading, transportation, fastening and other auxiliary operations; methods for determining the main structural and operational parameters of mining and transport machines, their productivity and	5	of che	oice						v
50	Equipment for metallurgical plants	efficiency in mining production General characteristics of the mechanical equipment of an iron and steel industry. Classification of the equipment on a fuctioning of drives in a cycle of working hours. The crushing equipment. The common data on process of	5	V						,	v

	crushing. Types of crushing ma-chines. Calculation of crushers. Chopper the equipment. The common data and classification of mills. Calculation of key parameters. The equipment of a uniform feed of technological machines. Types, the device, calculation of key parameters. The equipment for enrichment. The necessary mechanical equipment. Calculation of key parameters. The equipment for drying concentrates									
Machinery and equipment for drilling oil and gas wells	designs of equipment for drilling wells are studied, with the purpose of oil and gas production on land, the device and the main directions of	5	₹						•	V

		their installation and dismantling, operation and maintenance on land. Questions of an estimation of efficiency of cars and the equipment for a choice of a rational way of their operation are considered.								
52	Tribonika and Tribotechnics	The discipline provides students with knowledge in the field of tribology (friction, wear and lubrication), develops skills in calculation, design, testing and operation of friction units. In the course of training, students become familiar with the friction process, with the basic methods of tribotechnical testing and methods of modeling tribotechnical processes; they receive the necessary information about tribotechnical materials and rational technologies for obtaining wear-resistant, antifriction and friction coatings and modified surface				V				

	layers on various elements of									
	friction units									
	inction units									
53	Fuels, oils and special liquids The course is aimed at the	6				v				
	formation of students'									
	knowledge in the field of									
	operation of technological									
	equipment of industrial									
	complexes, taking into accoun	t								
	the rational use and storage of									
	lubricants and special liquids,									
	as well as the organization of									
	lubricants, collection,									
	regeneration of oils and their									
	storage at enterprises. The									
	objectives of the discipline are	:								
	to provide information on the									
	nomenclature of liquid minera	1								
	and synthetic oils, plastic,									
	solid, sealing, preservative									
	lubricants; to provide									
	information about the methods									
	and systems of lubrication of									
	machines, issues of									
	organization of the lubrication									
	economy, collection,									
	regeneration of oils and their									
	storage at enterprises; to maste	er								
	the existing methods of									

		assessing the quality of lubricants and special liquids.								
54	Technology maintenance and repair of compressor units and hydraulic machines	forms students' ideas about the basics of installation of compressor units and hydraulic machines, about the organization of the operation system, factors affecting operating conditions, as well as about modern technologies to		V	V					
55	Welding technologies in repair and service production	The course provides for the study of technology and modern technology, as well as welding materials for electric arc welding, flame welding and various types of thermal	5	V						

		cutting of metals, which are an integral part of the repair and maintenance work in production. The course involves the formation of students' knowledge and skills that provide a creative approach to solving problems of effective use of modern technologies during welding								
56	Machines and equipment of pumping and compressor stations	Purpose and classification of equipment of pumping and compressor stations. Equipment of pumping stations for transportation of oil and oil products. The equipment of compressor stations for transportation of natural gases. Shutoff and regulating valves and equipment of oil pipelines. Shutoff and regulating valves and equipment of gas pipelines. Technological scheme of piping equipment pumping and compressor stations. Automation and control of pumping and compressor stations equipment.							*	Y

57	Theory and practice of project management	Purpose: for students to master the basic principles and methods of project management, as well as develop the necessary skills for the successful implementation of projects in various fields of activity. Contents: Students learn the theoretical foundations of project management, including the concepts, principles, methods of planning, organizing, controlling, and completing projects.				V					
58	Operation and maintenance of drainage and pneumatic installations		5	V		V					

		pumping, fan and compressor units									
59	Operation and maintenance of dust and gas cleaning equipment and recycled water supply	The course provides for the study of modern systems of dust and gas purification and circulating water supply at industrial enterprises, rules of operation and maintenance, highly efficient cleaning of process and waste gases in industry. Modern electromechanical, chemical and biological technologies and solutions for gas purification, the latest designs of electric filters, bag filters, scrubbers, cyclones, vortex dust collectors, air purification systems, ventilation and air conditioning, modern technical and filter materials, etc. are also considered.	5	V		V					
60	Equipment and technology of well repair and maintenance	To get acquainted with promising innovative technologies and techniques in technological engineering. Awareness of the need for professional development	5	v		v					

	during their working life. The ability to formulate problems and use heuristic methods to solve them. The ability to critically use the methods of modern science in practice. The ability to assess the quality of advanced technologies and equipment in an expert manner. Ability to make a technical and economic comparison of various modifications of technological machines and equipment								
Industrial safety in the oil and gas industry	The complex of scientifically grounded constructive, technological, organizational measures aimed at minimizing the anthropogenic impact of oil and gas facilities on	5			V			V	

		of objects of the oil and gas industry. Technology for restoring and optimizing the state of environmental components								
62	Industrial safety in an industrial cluster	A complex of scientifically-based constructive, technological, organizational measures aimed at minimizing the man-made impact of industrial cluster facilities on environmental components. Forecasting, assessment of the consequences of man-made impacts on the components of the natural environment during the construction and operation of facilities. Classification, composition, sources of technogenic impact of objects. Technology of restoration and optimization of the state of components of the natural environment	5			V			V	
63	Fundamentals of energy saving in repair and service production	To form an idea of the general principles of developing an energy survey strategy, the modern regulatory framework	5	V		v				

		for energy efficiency, methods for determining regulatory and prospective indicators of energy efficiency, methods for confirming energy efficiency indicators and compliance with their regulatory values, modern and promising science-based technologies for energy conservation, control and improvement of energy quality, including the use of renewable energy sources								
64	Robotic complexes in metallurgical production	The development of the discipline is the study by students of industrial robots and manipulators of technological equipment, features of the design and calculation of modern structures of robotic complexes, their layout and structures, characteristics and requirements, conditions for the use of various types of manipulators in production.	5	V						
65	Energy-saving technologies in repair and service	Basic terms and definitions of energy saving. Energy saving	5			V				

	production in the oil and gas industry	in the oil and gas industry. The main uses of SER. Prospects for the development of unconventional energy sources. Energy-saving measures in the technology of the oil and gas industry. The use of heat pump installations in the gas and oil industry. Utilization and use of SER gas turbines at compressor stations of main gas pipelines								
66	Experimental technique	Forms students' general ideas about the methodology for determining the measurement error, conducting regression and correlation analyses, hardware design of a full-scale tensometric experiment, instill students with the skills of independent analysis of experimental data. To give students the knowledge necessary for further production, design and research activities about the nature and methodology of scientific research.	4							V

67]	The course provides for the	4		v				V	v
		essence and methodology of								
		scientific research, hardware								
		design of a full-scale								
		experiment. Familiarity with								
		modern methods of planning								
		experiments and estimating the								
		measurement error of								
		experimental results; mastering								
		the types of experimental tests,								
	Design of experiments bench	methods of processing test								
	and field tests	results, modern methods of								
		assessing reliability based on								
		test results (resource, research,								
		etc.). As a result of studying								
		the discipline, methods of								
		conducting experiments and								
		types of tests are mastered to								
		determine the resource and								
		reliability of technological								
		machines and equipment used								
		in the industry								
68		The purpose of the final	8					× 4		
08		attestation is to determine the	0			•		V)	'
	Final examination	assimilation degree of the state obligatory standard	,							
		corresponding to the level of higher professional education,								
		based on the results of which a								

document on education								
(diploma) is issued.								

5. Curriculum of educational program

NON-PROFIT JOINT STOCK COMPANY
"KAZAKH NATIONAL RESEARCH TECHNICAL UNIVERSITY NAMED AFTER K.I. SATBAYEV"

«APPROVED»
Decision of the Academic Council
NPJSC»KazNRTU
named after K.Sathayevs
dated 06.03.2025 Minutes Ni 10

WORKING CURRICULUM

 Academic year
 2025-2026 (Autumn, Spring)

 Group of educational programs
 B064 - "Mechanics and metal working"

 Educational program
 6B07107 - "Operational and Service Engineering"

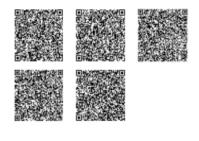
 The awarded academic degree
 Bachelor of engineering and technology

 Form and duration of study
 full time - 4 years

District				Total	Total	lek/lab/pr	in hours	From of	Allocation of face-to-face training based on courses and semesters								
Discipline code	Name of disciplines	Block	Cycle	ECTS credits	Total hours	Contact	SIS (including TSIS)	Form of control		urse		2 course		3 course		$\overline{}$	Prerequisites
				credits		hours	1515)		1 sem	2 sem	3 sem	4 sem	5 sem	6 sem	7 sem	8 sem	
	c	YCLE	OF GE	NERAL	EDUCAT	TION DISC	CIPLINES (GI	ED)									
						guage trai		,									
LNG108	E a fan landau		GED,	5	150	0045	105	E	5								
LNGIUS	Foreign language		RC	3	150	0.045	105	E	3						Ш		
LNG104	Kazakh (russian) language		GED, RC	5	150	0/0/45	105	E	5								
ING108	Foreign language		GED, RC	5	150	0/0/45	105	Е		5							
LNG104	Kazakh (russian) language		GED, RC	5	150	0/0/45	105	E		5							
M-2. Module of physical trainin																	
KFK101	Physical culture I		GED, RC	2	60	0030	30	E	2								
KFK102	Physical culture II		GED, RC	2	60	0030	30	Е		2							
KFK103	Physical culture III		GED, RC	2	60	0030	30	Е			2						
KFK104	Physical culture IV		GED, RC	2	60	0030	30	Е				2					
	M-3. Module of information technology																
CSE677	Information and communication technology		GED, RC	5	150	30/15/0	105	Е				5					
			M-4, M	odule of	socio-cu	ltural dev	elopment										
HUM137	History of Kazakhstan		GED, RC	5	150	15/0/30	105	GE	5								
HUM132	Philosophy		GED, RC	5	150	15/0/30	105	Е			5						
HUM120	Module of socio-political knowledge (sociology, political science)		GED, RC	3	90	15/0/15	60	Е			3						
HUM134	Module of socio-political knowledge (cultural studies, psychology)		GED, RC	5	150	30/0/15	105	E				5					
			M-5. M	odule of	socio-cu	ltural dev	elopment				_						
HUM136	Fundamentals of anti-corruption culture and law	1	GED, CCH	5	150	30/0/15	105	E			5						
MNG489	Fundamentals of economics and entrepreneurship	1	GED, CCH	5	150	30/0/15	105	Е			5						
MSM500	Fundamentals of scientific research methods	1	GED, CCH	5	150	30/0/15	105	Е			5						
MNG564	Basics of Financial Literacy	1	GED, CCH	5	150	30/0/15	105	Е			5						
CHE656	Ecology and life safety	1	GED, CCH	5	150	30/0/15	105	Е			5						
	CYCLE OF BASIC DISCIPLINES (BD)																
		M-6	. Modul	e of phy	sical and	mathema	tical training										
MAT101	Mathematics I		BD, UC	5	150	15/0/30	105	E	5								
MAT102	Mathematics II		BD, UC	5	150	15/0/30	105	E		5						Ш	MAT101

	Physics		BD, UC	5	150	15/15/15	105	Е		5						
			3	4-7. Mod	dule of b	asic traini	ng									
GEN429	Engineering and computer graphics		BD, UC	5	150	15/0/30	105	E	5							
TEC456	Introduction to the specialty		BD, UC	5	150	30/0/15	105	Е	5							
TEC564	The basics of plumbing		BD, UC	4	120	0/0/45	75	E	Г	4						
AAP173	Practical training		BD, UC	2				R	Т	2			Т			
GEN411	Theoretical and applied mechanics		BD, UC	5	150	30/15/0	105	Е	\vdash		5		\vdash			
TEC463	Interchangeability, standardization and technical measurements		BD, UC	5	150	30/0/15	105	Е	\vdash		5		\vdash			
PED104	The branch Materials and Structural Materials Technology		BD, UC	5	150	30/15/0	105	Е	\vdash		5		\vdash			PHY112
TEC554	Hydraulies and hydraulie drive of technological machines		BD, UC	6	180	30/0/30	120	Е	\vdash			6	\vdash			
GEN408	Strength of materials		BD, UC	5	150	15/15/15	105	Е	\vdash		\vdash	5	\vdash			
NSE143	Industrial economics		BD, UC	5	150	30/0/15	105	Е	\vdash		\vdash	5				
TEC164	Basics of thermodynamics and heat engineering installations		BD, UC	5	150	30/0/15	105	Е	\vdash		\vdash		5			
GEN125	Bases of designing and details of cars		BD, UC	5	150	15/15/15	105	Е	\vdash	\vdash	\vdash	\vdash	5			
ELC103	Electrotechnics and microelectronics		BD, UC	5	150	30/15/0	105	E	\vdash		\vdash	\vdash	5			PHY 112
CSE831	Fundamentals of Artificial Intelligence		BD, UC	5	150	15/0/30	105	E	\vdash		\vdash		5			
TEC557	Structural strength of parts and assemblies of technological		BD, UC	4	120	30/0/15	90	E	\vdash				4			
TEC4II	machines		BD,	5	150	30/0/15	105	E					5			PHY112
	Equipment maintenance system		CCH BD,													
MNG562	Legal regulation of intellectual property	1	ССН	5	150	30/0/15	105	Е					5			
TEC410	Fundamentals of the theory of wear of machinery and equipment	1	BD, CCH	5	150	30/0/15	105	Е					5			MAT102
MCH533	Inclusive engineering technologies	ı	BD, CCH	5	150	30/0/15	105	Е					5			
PED446	Fundamentals of the theory of reliability of machines and mechanisms		BD, UC	5	150	30/0/15	105	Е						5		MAT102
TEC476	Internal combustion engines	ı	BD, CCH	5	150	30/0/15	105	Е						5		
TEC477	Gas-pumping units	ı	BD, CCH	5	150	30/0/15	105	E						5		
MNG563	Fundamentals of sustainable development and ESG projects in Kazakhstan	ı	BD, CCH	5	150	30/0/15	105	E						5		
TEC478	Gas turbine plants	ı	BD, CCH	5	150	30/0/15	105	Е						5		
TEC469	Pumps, fans, compressors	2	BD, CCH	5	150	30/0/15	105	Е						5		
TEC480	Drives of mining machines and stationary options	2	BD, CCH	5	150	30/0/15	105	Е						5		
TEC457	Drives of technological machines	2	BD, CCH	5	150	30/0/15	105	Е						5		
TEC553	Fundamentals of designing technological machines and machine graphics	ı	BD, CCH	6	180	15/0/45	120	Е							6	
TEC556	Computer technologies in operational and service engineering	1	BD, CCH	6	180	15/0/45	120	Е							6	
			CYCLE	OF PR	OFILE I	ISCIPLIN	NES (PD)			_	_			_		
						essional ac										
AAP102	Production practice I		PD, UC	2	1.50			R	П			2	П			
TEC570	Technical diagnostics of technological equipment		PD, UC	4	120	30/0/15	75	E	\vdash				\vdash	4		
AAP183	Production practice II		PD, UC	3				R	\vdash	\vdash	\vdash	\vdash	\vdash	3		
TEC429	Mining and transport machines	ı	PD, CCH	5	150	30/0/15	105	E						5		
PED149	Equipment for metallurgical plants	1	PD, CCH	5	150	30/0/15	105	E						5		
TEC430	Machinery and equipment for drilling oil and gas wells	1	PD,	5	150	30/0/15	105	Е	\vdash				\vdash	5		
TEC575	Experimental technique	2	PD,	4	120	30/0/15	75	E						4		
TEC576	Design of experiments bench and field tests	2	PD,	4	120	30/0/15	75	E						4		
TEC185	Technology of repair and operation of technological machines		CCH PD, UC	5	150	30/0/15	105	E							5	
PED193	Instrumentation and automation of technological machines		PD, UC	5	150	30/0/15	105	Е							5	PED190
			PD, UC	6	180	30/0/30	120	Е							6	
TEC560	Installation and assembly production of technological machines	l		_												

notes constr on VALVERSELT:							6	0	6	0	6	iO	6				
	Total based or	UNIV	ERSITY-						32	28	30	30	29	31	33	27	
AAP500	Military training																
Additional type of training (ATT)																	
ECA103	Final examination		FA	8												8	
M-9. Module of final attestation																	
TEC451	Energy-saving technologies in repair and service production in the oil and gas industry	3	PD, CCH	5	150	30/0/15	105	Е								5	
TEC446	Robotic complexes in metallurgical production	3	PD, CCH	5	150	30/0/15	105	Е								5	
TEC500	Fundamentals of energy saving in repair and service production	3	PD, CCH	5	150	30/0/15	105	Е								5	
TEC565	Industrial safety in an industrial cluster	2	PD, CCH	5	150	30/0/15	105	Е								5	
PED457	Industrial safety in the oil and gas industry	2	PD, CCH	5	150	30/0/15	105	Е								5	TEC130
TEC443	Equipment and technology of well repair and maintenance	1	PD, CCH	5	150	30/0/15	105	Е								151	
TEC442	Operation and maintenance of dust and gas cleaning equipment and recycled water supply	1	PD, CCH	5	150	30/0/15	105	Е								5	
TEC441	Operation and maintenance of drainage and pneumatic installations	1	PD, CCH	5	150	30/0/15	105	Е								5	
TEC566	Metal welding and cutting		PD, UC	4	120	30/15/0	75	E								4	
NSE185	Theory and practice of project management	2	PD, CCH	5	150	30/0/15	105	Е							5		
TEC135	Machines and equipment of pumping and compressor stations	2	PD, CCH	5	150	30/0/15	105	Е							5		
TEC450	Welding technologies in repair and service production	2	PD, CCH	5	150	30/0/15	105	Е							5		
PED130	Technology maintenance and repair of compressor units and hydraulic machines	2	PD, CCH	5	150	30/0/15	105	Е							5		PED118, PED120
TEC568	Fuels, oils and special liquids	1	PD, CCH	6	180	30/15/15	120	Е							6		


Number of credits for the entire period of study

Cycle code	Cycles of disciplines	Credits										
Cycle code	Cycles of disciplines	Required component (RC)	Required component (RC) University component (UC) Component									
GED	Cycle of general education disciplines	51	0	5	56							
BD	Cycle of basic disciplines	0	91	21	112							
PD	Cycle of profile disciplines	0	29	35	64							
	Total for theoretical training:	51	120	61	232							
FA	Final attestation				8							
	TOTAL:				240							

Decision of the Educational and Methodological Council of KazNRTU named after K.Satpayev, Minutes No 3 dated 20.12.2024

Decision of the Academic Council of the Institute. Minutes No 3 dated 19.12.2024

Signed:	
Governing Board member - Vice-Rector for Academic Affairs	Uskenbayeva R. K.
Approved:	
Vice Provost on academic development	Kalpeyeva Z. E.
Head of Department - Department of Educational Program Management and Academic-Methodological Work	Zhumagaliyeva A. S.
Director of the Institute - A.Burkitbaev Institute of Energy and Mechanical Engineering	Yelenesov K
Department Chair - Technological machines and equipment	Kaliyev B
Representative of the Academic Committee from Employers Acknowledged	Shakenov A. T.

